The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  2  0  X  X  X  X  X  2  0  2  2  2
 0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X+2 2X+2 2X+2  2 2X+2 2X+2 2X+2 2X+2  2  0 2X  2  2  2 2X+2  2 2X+2 2X+2  2
 0  0 2X  0  0  0 2X  0  0 2X  0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X  0  0  0  0  0  0  0  0  0  0  0  0 2X 2X 2X 2X  0 2X 2X 2X 2X 2X  0 2X 2X 2X 2X
 0  0  0 2X  0  0  0 2X 2X 2X 2X 2X 2X  0 2X  0  0  0  0  0 2X 2X 2X 2X 2X 2X 2X 2X  0  0  0  0  0  0 2X 2X 2X 2X  0  0  0  0  0  0 2X 2X  0 2X 2X  0  0
 0  0  0  0 2X 2X 2X 2X 2X  0  0 2X  0 2X 2X  0  0  0 2X 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0  0 2X 2X  0  0  0  0 2X 2X  0  0  0 2X 2X  0

generates a code of length 51 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+62x^48+64x^49+78x^50+128x^51+56x^52+64x^53+40x^54+8x^56+8x^58+1x^64+2x^66

The gray image is a code over GF(2) with n=408, k=9 and d=192.
This code was found by Heurico 1.16 in 0.109 seconds.